
Capítulo 2.
Procesadores segmentados

Based on the original material of the book:
D.A. Patterson y J.L. Hennessy “Computer Organization and Design:
The Hardware/Software Interface” 4th edition.

Escuela Politécnica Superior
Universidad Autónoma de Madrid

Profesores:
G130 y G131: Iván González Martínez
G136: Francisco Javier Gómez Arribas

Arquitectura de Computadores

Agenda
n  The Processor: A Basic MIPS Implementation

n  Building a Datapath
n  Designing the Control Unit (single cycle)

n  An Overview of Pipelining
n  Pipeline performance
n  MIPS five stages pipeline
n  Hazards: Structure, Data and Control

n  MIPS Pipelined Datapath and Control
n  Data Hazards: Forwarding vs Stalling
n  Control Hazards: Branch prediction

 2

The Processor — 3

Introduction
n  CPU performance factors

n  Instruction count
n  Determined by ISA and compiler

n  CPI and Cycle time
n  Determined by CPU hardware

n  We will examine two MIPS implementations
n  A simplified version
n  A more realistic pipelined version

n  Simple subset, shows most aspects
n  Memory reference: lw, sw
n  Arithmetic/logical: add, sub, and, or, slt
n  Control transfer: beq, j

§4.1 Introduction

Introduction (2)

n  We will study simple RISC processor
called MIPS (Microprocessor without
Interlocked Pipeline Stages)

n  32 bits processor (data, memory)

n  32 general purpose registers

n  Separated data and code memory

(Harvard architecture)

The Processor — 4

The Processor — 5

CPU Overview
Instruction Execution

n  PC → instruction memory,
 fetch instruction

n  Register numbers → register file,
 read registers

n  Depending on instruction class
n  Use ALU to calculate

n  Arithmetic result
n  Memory address for load/store
n  Branch target address

n  Access data memory for load/store
n  PC ← target address or PC + 4

The Processor — 6

Datapath & control design
n  Datapath: Elements that process data and

addresses in the CPU
n  Registers, ALUs, mux’s, memories, …
n  We will build a MIPS datapath incrementally

n  Control Unit: Information comes from the 32 bits
of the instruction and the control lines select:

n  Registers to be read (always read two).
n  The operation to be performed by ALU
n  If data memory is to be read or written
n  What is written and where in the register file
n  What goes in PC

n  Combinational Single Cycle implementation

§4.3 B
uilding a D

atapath

The Processor — 7

Full Datapath

The Processor — 8

The Main Control Unit
n  Control signals derived from instruction

0 rs rt rd shamt funct
31:26 5:0 25:21 20:16 15:11 10:6

35 or 43 rs rt address
31:26 25:21 20:16 15:0

4 rs rt address
31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

The Processor — 9

ALU Control
n  ALU used for

n  Load/Store: F = add
n  Branch: F = subtract
n  R-type: F depends on funct field

§4.4 A S
im

ple Im
plem

entation S
chem

e

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

The Processor — 10

ALU Control
n  Assume 2-bit ALUOp derived from opcode

n  Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

The Processor — 11

Datapath With Control

The Processor — 12

R-Type Instruction

The Processor — 13

Load Instruction

The Processor — 14

Branch-on-Equal Instruction

The Processor — 15

Implementing Jumps

n  Jump uses word address
n  Update PC with concatenation of

n  Top 4 bits of old PC
n  26-bit jump address
n  00

n  Need an extra control signal decoded from
opcode

2 address
31:26 25:0

Jump

The Processor — 16

Datapath With Jumps Added

The Processor — 17

Performance Issues
n  Longest delay determines clock period

n  Critical path: load instruction
n  Instruction memory → register file → ALU →

data memory → register file
n  Not feasible to vary period for different

instructions
n  Violates design principle

n  Making the common case fast
n  We will improve performance by pipelining

Agenda
n  A Basic MIPS Implementation

n  Building a Datapath
n  Designing the Control Unit (single cycle)

n  An Overview of Pipelining
n  Pipeline performance
n  MIPS five stages pipeline
n  Hazards: Structure, Data and Control

n  MIPS Pipelined Datapath and Control
n  Data Hazards: Forwarding vs Stalling
n  Control Hazards: Branch prediction

 18

The Processor — 19

Pipelining Analogy
n  Pipelined laundry: overlapping execution

n  Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining n  Four loads:
n  Speedup

= 8/3.5 = 2.3
n  Non-stop:

n  Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages

The Processor — 20

MIPS Pipeline
n  Five stages, one step per stage

1.  IF: Instruction fetch from memory
2.  ID: Instruction decode & register read
3.  EX: Execute operation or calculate address
4.  MEM: Access memory operand
5.  WB: Write result back to register

The Processor — 21

Pipeline Performance
n  Assume time for stages is

n  100ps for register read or write
n  200ps for other stages

n  Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

The Processor — 22

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

The Processor — 23

Pipeline Speedup
n  If all stages are balanced

n  i.e., all take the same time
n  Time between instructionspipelined

= Time between instructionsnonpipelined
 Number of stages

n  If not balanced, speedup is less
n  Speedup due to increased throughput

n  Latency (time for each instruction) does not
decrease

The Processor — 24

Pipelining and ISA Design
n  MIPS ISA designed for pipelining

n  All instructions are 32-bits
n  Easier to fetch and decode in one cycle
n  c.f. x86: 1- to 17-byte instructions

n  Few and regular instruction formats
n  Can decode and read registers in one step

n  Load/store addressing
n  Can calculate address in 3rd stage, access memory

in 4th stage
n  Alignment of memory operands

n  Memory access takes only one cycle

The Processor — 25

Hazards
n  Situations that prevent starting the next

instruction in the next cycle
n  Structure hazards

n  A required resource is busy
n  Data hazard

n  Need to wait for previous instruction to
complete its data read/write

n  Control hazard
n  Deciding on control action depends on

previous instruction

The Processor — 26

Structure Hazards
n  Conflict for use of a resource
n  In MIPS pipeline with a single memory

n  Load/store requires data access
n  Instruction fetch would have to stall for that

cycle
n  Would cause a pipeline “bubble”

n  Hence, pipelined datapaths require
separate instruction/data memories
n  Or separate instruction/data caches

The Processor — 27

Data Hazards
n  An instruction depends on completion of

data access by a previous instruction
n  add $s0, $t0, $t1
sub $t2, $s0, $t3

The Processor — 28

Forwarding (aka Bypassing)
n  Use result when it is computed

n  Don’t wait for it to be stored in a register
n  Requires extra connections in the datapath

The Processor — 29

Load-Use Data Hazard
n  Can’t always avoid stalls by forwarding

n  If value not computed when needed
n  Can’t forward backward in time!

The Processor — 30

Code Scheduling to Avoid Stalls
n  Reorder code to avoid use of load result in

the next instruction
n  C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

The Processor — 31

Control Hazards
n  Branch determines flow of control

n  Fetching next instruction depends on branch
outcome

n  Pipeline can’t always fetch correct instruction
n  Still working on ID stage of branch

n  In MIPS pipeline
n  Need to compare registers and compute

target early in the pipeline
n  Add hardware to do it in ID stage

The Processor — 32

Stall on Branch
n  Wait until branch outcome determined

before fetching next instruction

The Processor — 33

Branch Prediction
n  Longer pipelines can’t readily determine

branch outcome early
n  Stall penalty becomes unacceptable

n  Predict outcome of branch
n  Only stall if prediction is wrong

n  In MIPS pipeline
n  Can predict branches not taken
n  Fetch instruction after branch, with no delay

The Processor — 34

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

The Processor — 35

More-Realistic Branch Prediction
n  Static branch prediction

n  Based on typical branch behavior
n  Example: loop and if-statement branches

n  Predict backward branches taken
n  Predict forward branches not taken

n  Dynamic branch prediction
n  Hardware measures actual branch behavior

n  e.g., record recent history of each branch

n  Assume future behavior will continue the trend
n  When wrong, stall while re-fetching, and update history

The Processor — 36

Pipeline Summary

n  Pipelining improves performance by
increasing instruction throughput
n  Executes multiple instructions in parallel
n  Each instruction has the same latency

n  Subject to hazards
n  Structure, data, control

n  Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Agenda
n  A Basic MIPS Implementation

n  Building a Datapath
n  Designing the Control Unit (single cycle)

n  An Overview of Pipelining
n  Pipeline performance
n  MIPS five stages pipeline
n  Hazards: Structure, Data and Control

n  MIPS Pipelined Datapath and Control
n  Data Hazards: Forwarding vs Stalling
n  Control Hazards: Branch prediction

The Processor — 38

MIPS Pipelined Datapath
§4.6 P

ipelined D
atapath and C

ontrol

WB

MEM

Right-to-left
flow leads to
hazards

The Processor — 39

Pipeline registers
n  Need registers between stages

n  To hold information produced in previous cycle

The Processor — 40

Pipeline Operation
n  Cycle-by-cycle flow of instructions through

the pipelined datapath
n  “Single-clock-cycle” pipeline diagram

n  Shows pipeline usage in a single cycle
n  Highlight resources used

n  c.f. “multi-clock-cycle” diagram
n  Graph of operation over time

n  We’ll look at “single-clock-cycle” diagrams
for load & store

The Processor — 41

IF for Load, Store, …

The Processor — 42

ID for Load, Store, …

The Processor — 43

EX for Load

The Processor — 44

MEM for Load

The Processor — 45

WB for Load

Wrong
register
number

The Processor — 46

Corrected Datapath for Load

The Processor — 47

EX for Store

The Processor — 48

MEM for Store

The Processor — 49

WB for Store

The Processor — 50

Multi-Cycle Pipeline Diagram
n  Form showing resource usage

The Processor — 51

Multi-Cycle Pipeline Diagram
n  Traditional form

The Processor — 52

Single-Cycle Pipeline Diagram
n  State of pipeline in a given cycle

The Processor — 53

Pipelined Control (Simplified)

The Processor — 54

Pipelined Control
n  Control signals derived from instruction

n  As in single-cycle implementation

The Processor — 55

Pipelined Control

The Processor — 56

Data Hazards in ALU Instructions
n  Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

n  We can resolve hazards with forwarding
n  How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

The Processor — 57

Dependencies & Forwarding

The Processor — 58

Detecting the Need to Forward

n  Pass register numbers along pipeline
n  e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
n  ALU operand register numbers in EX stage

are given by
n  ID/EX.RegisterRs, ID/EX.RegisterRt

n  Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

The Processor — 59

Detecting the Need to Forward
n  But only if forwarding instruction will write

to a register!
n  EX/MEM.RegWrite, MEM/WB.RegWrite

n  And only if Rd for that instruction is not
$zero
n  EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

The Processor — 60

Forwarding Paths & Conditions

 EX hazard
* if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
* if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

 MEM hazard
* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

The Processor — 61

Double Data Hazard
n  Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

n  Both hazards occur
n  Want to use the most recent

n  Revise MEM hazard condition
n  Only fwd if EX hazard condition isn’t true

The Processor — 62

Revised Forwarding Condition
n  MEM hazard

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

The Processor — 63

Datapath with Forwarding

The Processor — 64

Load-Use Data Hazard

Need to stall
for one cycle

The Processor — 65

Load-Use Hazard Detection
n  Check when using instruction is decoded

in ID stage
n  ALU operand register numbers in ID stage

are given by
n  IF/ID.RegisterRs, IF/ID.RegisterRt

n  Load-use hazard when
n  ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

n  If detected, stall and insert bubble

The Processor — 66

How to Stall the Pipeline
n  Force control values in ID/EX register

to 0
n  EX, MEM and WB do nop (no-operation)

n  Prevent update of PC and IF/ID register
n  Using instruction is decoded again
n  Following instruction is fetched again
n  1-cycle stall allows MEM to read data for lw

n  Can subsequently forward to EX stage

The Processor — 67

Stall/Bubble in the Pipeline

Stall inserted
here

The Processor — 68

Stall/Bubble in the Pipeline

Or, more
accurately…

The Processor — 69

Datapath with Hazard Detection

The Processor — 70

Stalls and Performance

n  Stalls reduce performance
n  But are required to get correct results

n  Compiler can arrange code to avoid
hazards and stalls
n  Requires knowledge of the pipeline structure

The BIG Picture

The Processor — 71

Branch Hazards
n  If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

The Processor — 72

Reducing Branch Delay
n  Move hardware to determine outcome to ID

stage
n  Target address adder
n  Register comparator

n  Example: branch taken
 36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

The Processor — 73

Example: Branch Taken

The Processor — 74

Example: Branch Taken

The Processor — 75

Data Hazards for Branches
n  If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

n  Can resolve using forwarding

The Processor — 76

Data Hazards for Branches
n  If a comparison register is a destination of

preceding ALU instruction or 2nd preceding
load instruction
n  Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

The Processor — 77

Data Hazards for Branches
n  If a comparison register is a destination of

immediately preceding load instruction
n  Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Branch Hazard and Prediction
•  Static prediction: always predict the same: Speculative running until
condition is solved. If error, remove speculative results:

•  Effective Prediction (E): branch occurs.
•  No Effective prediction (NE): branch does NOT occur.
•  Prediction NE if the branch is forward and E if it is back.

•  Dynamic Prediction: change the prediction according the branch history.
 Use a small memory for each branch address (BHT, Branch History
Table)

F

PC Branch Instruction Address

BHT

E NE
T

T

F

F

1 BIT PREDICTION 2 BITS PREDICTION

Ef Ed T
F

T

NEd NEf T T

F F

The Processor — 79

Dynamic Branch Prediction
n  In deeper and superscalar pipelines, branch

penalty is more significant
n  Use dynamic prediction

n  Branch prediction buffer (aka branch history table)
n  Indexed by recent branch instruction addresses
n  Stores outcome (taken/not taken)
n  To execute a branch

n  Check table, expect the same outcome
n  Start fetching from fall-through or target
n  If wrong, flush pipeline and flip prediction

The Processor — 80

Calculating the Branch Target
n  Even with predictor, still need to calculate

the target address
n  1-cycle penalty for a taken branch

n  Branch target buffer
n  Cache of target addresses
n  Indexed by PC when instruction fetched

n  If hit and instruction is branch predicted taken, can
fetch target immediately

Instruction
Address

Target
Address

History
bits Branch Target Buffer (BTB)

look-up table Fully associative

Program Counter

Fetch Decod.

Load target address

Address
Instruction

Instruction Pipeline

Target address found

Branch Target Buffer (BTB)

The Processor — 82

Fallacies
n  Pipelining is easy (!)

n  The basic idea is easy
n  The devil is in the details

n  e.g., detecting data hazards

n  Pipelining is independent of technology
n  So why haven’t we always done pipelining?
n  More transistors make more advanced techniques

feasible
n  Pipeline-related ISA design needs to take account of

technology trends
n  e.g., predicated instructions

§4.13 Fallacies and P
itfalls

The Processor — 83

Pitfalls
n  Poor ISA design can make pipelining

harder
n  e.g., complex instruction sets (VAX, IA-32)

n  Significant overhead to make pipelining work
n  IA-32 micro-op approach

n  e.g., complex addressing modes
n  Register update side effects, memory indirection

n  e.g., delayed branches
n  Advanced pipelines have long delay slots

The Processor — 84

Concluding Remarks
n  ISA influences design of datapath and control
n  Datapath and control influence design of ISA
n  Pipelining improves instruction throughput

using parallelism
n  More instructions completed per second
n  Latency for each instruction not reduced

n  Hazards: structural, data, control

§4.14 C
oncluding R

em
arks

Información Adicional
n  Información adicional para los problemas

del capítulo 2

85

q Dependencias que se presentan para 2 instrucciones i y j, con i
ejecutándose antes que j.
q  RAW (Read After Write): la instrucción posterior j intenta leer una fuente
antes de que la instrucción anterior i la haya modificado.
q  WAR (Write After Read): la instrucción j intenta modificar un destino
antes de que la instrucción i lo haya leído como fuente.
q  WAW (Write After Write): la instrucción j intenta modificar un destino
antes de que la instrucción i lo haya hecho (se modifica el orden normal de
escritura).

ü  Ejemplos: RAW WAR WAW

ADD r1, r2, r3 ADD r1, r2, r3 DIV r1, r2, r3
SUB r5, r1, r6 OR r3,r4, r5 AND r1,r4, r5
AND r6, r5, r1
ADD r4, r1, r3
SW r10, 100(r1)

Tipos de riesgos por dependencia de datos

En procesadores segmentados
con ejecución en orden SÓLO
hay que gestionar los RAW

