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Introduction 
n  CPU performance factors 

n  Instruction count 
n  Determined by ISA and compiler 

n  CPI and Cycle time 
n  Determined by CPU hardware 

n  We will examine two MIPS implementations 
n  A simplified version 
n  A more realistic pipelined version 

n  Simple subset, shows most aspects 
n  Memory reference: lw, sw 
n  Arithmetic/logical: add, sub, and, or, slt 
n  Control transfer: beq, j 

§4.1 Introduction 



Introduction (2) 

n  We will study  simple RISC processor 
called MIPS (Microprocessor without 
Interlocked Pipeline Stages) 

n  32 bits processor (data, memory) 

n  32 general purpose registers 

n  Separated data and code memory 

(Harvard architecture) 
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CPU Overview 
Instruction Execution  

n  PC → instruction memory,                     
 fetch instruction 

n  Register numbers → register file,         
 read registers 

n  Depending on instruction class 
n  Use ALU to calculate 

n  Arithmetic result 
n  Memory address for load/store 
n  Branch target address 

n  Access data memory for load/store 
n  PC ← target address or PC + 4 
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Datapath & control design 
n  Datapath: Elements that process data and 

addresses in the CPU 
n  Registers, ALUs, mux’s, memories, … 
n  We will build a MIPS datapath incrementally 

n  Control Unit: Information comes from the 32 bits 
of the instruction and the control lines select: 

n  Registers to be read (always read two). 
n  The operation to be performed by ALU 
n  If data memory is to be read or written 
n  What is written and where in the register file 
n  What goes in PC 

n  Combinational Single Cycle implementation 

§4.3 B
uilding a D

atapath 
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Full Datapath 
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The Main Control Unit 
n  Control signals derived from instruction 

0 rs rt rd shamt funct 
31:26 5:0 25:21 20:16 15:11 10:6 

35 or 43 rs rt address 
31:26 25:21 20:16 15:0 

4 rs rt address 
31:26 25:21 20:16 15:0 

R-type 

Load/ 
Store 

Branch 

opcode always 
read 

read, 
except 
for load 

write for 
R-type 

and load 

sign-extend 
and add 
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ALU Control 
n  ALU used for 

n  Load/Store: F = add 
n  Branch: F = subtract 
n  R-type: F depends on funct field 

§4.4 A S
im

ple Im
plem

entation S
chem

e 

ALU control Function 
0000 AND 
0001 OR 
0010 add 
0110 subtract 
0111 set-on-less-than 
1100 NOR 
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ALU Control 
n  Assume 2-bit ALUOp derived from opcode 

n  Combinational logic derives ALU control 

opcode ALUOp Operation funct ALU function ALU control 
lw 00 load word XXXXXX add 0010 

sw 00 store word XXXXXX add 0010 
beq 01 branch equal XXXXXX subtract 0110 
R-type 10 add 100000 add 0010 

subtract 100010 subtract 0110 
AND 100100 AND 0000 
OR 100101 OR 0001 

set-on-less-than 101010 set-on-less-than 0111 
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Datapath With Control 
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R-Type Instruction 
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Load Instruction 
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Branch-on-Equal Instruction 
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Implementing Jumps 

n  Jump uses word address 
n  Update PC with concatenation of 

n  Top 4 bits of old PC 
n  26-bit jump address 
n  00 

n  Need an extra control signal decoded from 
opcode 

2 address 
31:26 25:0 

Jump 
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Datapath With Jumps Added 
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Performance Issues 
n  Longest delay determines clock period 

n  Critical path: load instruction 
n  Instruction memory → register file → ALU → 

data memory → register file 
n  Not feasible to vary period for different 

instructions 
n  Violates design principle 

n  Making the common case fast 
n  We will improve performance by pipelining 
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Pipelining Analogy 
n  Pipelined laundry: overlapping execution 

n  Parallelism improves performance 

§4.5 A
n O

verview
 of P

ipelining n  Four loads: 
n  Speedup 

= 8/3.5 = 2.3 
n  Non-stop: 

n  Speedup 
= 2n/0.5n + 1.5 ≈ 4 
= number of stages 
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MIPS Pipeline 
n  Five stages, one step per stage 

1.  IF: Instruction fetch from memory 
2.  ID: Instruction decode & register read 
3.  EX: Execute operation or calculate address 
4.  MEM: Access memory operand 
5.  WB: Write result back to register 
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Pipeline Performance 
n  Assume time for stages is 

n  100ps for register read or write 
n  200ps for other stages 

n  Compare pipelined datapath with single-cycle 
datapath 

Instr Instr fetch Register 
read 

ALU op Memory 
access 

Register 
write 

Total time 

lw 200ps 100 ps 200ps 200ps 100 ps 800ps 

sw 200ps 100 ps 200ps 200ps 700ps 

R-format 200ps 100 ps 200ps 100 ps 600ps 

beq 200ps 100 ps 200ps 500ps 
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Pipeline Performance 
Single-cycle (Tc= 800ps) 

Pipelined (Tc= 200ps) 
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Pipeline Speedup 
n  If all stages are balanced 

n  i.e., all take the same time 
n  Time between instructionspipelined 

= Time between instructionsnonpipelined 
  Number of stages 

n  If not balanced, speedup is less 
n  Speedup due to increased throughput 

n  Latency (time for each instruction) does not 
decrease 
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Pipelining and ISA Design 
n  MIPS ISA designed for pipelining 

n  All instructions are 32-bits 
n  Easier to fetch and decode in one cycle 
n  c.f. x86: 1- to 17-byte instructions 

n  Few and regular instruction formats 
n  Can decode and read registers in one step 

n  Load/store addressing 
n  Can calculate address in 3rd stage, access memory 

in 4th stage 
n  Alignment of memory operands 

n  Memory access takes only one cycle 
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Hazards 
n  Situations that prevent starting the next 

instruction in the next cycle 
n  Structure hazards 

n  A required resource is busy 
n  Data hazard 

n  Need to wait for previous instruction to 
complete its data read/write 

n  Control hazard 
n  Deciding on control action depends on 

previous instruction 
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Structure Hazards 
n  Conflict for use of a resource 
n  In MIPS pipeline with a single memory 

n  Load/store requires data access 
n  Instruction fetch would have to stall for that 

cycle 
n  Would cause a pipeline “bubble” 

n  Hence, pipelined datapaths require 
separate instruction/data memories 
n  Or separate instruction/data caches 
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Data Hazards 
n  An instruction depends on completion of 

data access by a previous instruction 
n  add  $s0, $t0, $t1 
sub  $t2, $s0, $t3 
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Forwarding (aka Bypassing) 
n  Use result when it is computed 

n  Don’t wait for it to be stored in a register 
n  Requires extra connections in the datapath 
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Load-Use Data Hazard 
n  Can’t always avoid stalls by forwarding 

n  If value not computed when needed 
n  Can’t forward backward in time! 
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Code Scheduling to Avoid Stalls 
n  Reorder code to avoid use of load result in 

the next instruction 
n  C code for A = B + E; C = B + F; 

lw  $t1, 0($t0) 

lw  $t2, 4($t0) 

add $t3, $t1, $t2 

sw  $t3, 12($t0) 

lw  $t4, 8($t0) 

add $t5, $t1, $t4 

sw  $t5, 16($t0) 

stall 

stall 

lw  $t1, 0($t0) 

lw  $t2, 4($t0) 

lw  $t4, 8($t0) 

add $t3, $t1, $t2 

sw  $t3, 12($t0) 

add $t5, $t1, $t4 

sw  $t5, 16($t0) 

11 cycles 13 cycles 
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Control Hazards 
n  Branch determines flow of control 

n  Fetching next instruction depends on branch 
outcome 

n  Pipeline can’t always fetch correct instruction 
n  Still working on ID stage of branch 

n  In MIPS pipeline 
n  Need to compare registers and compute 

target early in the pipeline 
n  Add hardware to do it in ID stage 
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Stall on Branch 
n  Wait until branch outcome determined 

before fetching next instruction 
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Branch Prediction 
n  Longer pipelines can’t readily determine 

branch outcome early 
n  Stall penalty becomes unacceptable 

n  Predict outcome of branch 
n  Only stall if prediction is wrong 

n  In MIPS pipeline 
n  Can predict branches not taken 
n  Fetch instruction after branch, with no delay 
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MIPS with Predict Not Taken 

Prediction 
correct 

Prediction 
incorrect 
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More-Realistic Branch Prediction 
n  Static branch prediction 

n  Based on typical branch behavior 
n  Example: loop and if-statement branches 

n  Predict backward branches taken 
n  Predict forward branches not taken 

n  Dynamic branch prediction 
n  Hardware measures actual branch behavior 

n  e.g., record recent history of each branch 

n  Assume future behavior will continue the trend 
n  When wrong, stall while re-fetching, and update history 
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Pipeline Summary 

n  Pipelining improves performance by 
increasing instruction throughput 
n  Executes multiple instructions in parallel 
n  Each instruction has the same latency 

n  Subject to hazards 
n  Structure, data, control 

n  Instruction set design affects complexity of 
pipeline implementation 

The BIG Picture 
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MIPS Pipelined Datapath 
§4.6 P

ipelined D
atapath and C

ontrol 

WB 

MEM 

Right-to-left 
flow leads to 
hazards 
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Pipeline registers 
n  Need registers between stages 

n  To hold information produced in previous cycle 
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Pipeline Operation 
n  Cycle-by-cycle flow of instructions through 

the pipelined datapath 
n  “Single-clock-cycle” pipeline diagram 

n  Shows pipeline usage in a single cycle 
n  Highlight resources used 

n  c.f. “multi-clock-cycle” diagram 
n  Graph of operation over time 

n  We’ll look at “single-clock-cycle” diagrams 
for load & store 
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IF for Load, Store, … 
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ID for Load, Store, … 
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EX for Load 
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MEM for Load 
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WB for Load 

Wrong 
register 
number 
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Corrected Datapath for Load 
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EX for Store 
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MEM for Store 
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WB for Store 
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Multi-Cycle Pipeline Diagram 
n  Form showing resource usage 
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Multi-Cycle Pipeline Diagram 
n  Traditional form 
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Single-Cycle Pipeline Diagram 
n  State of pipeline in a given cycle 
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Pipelined Control (Simplified) 
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Pipelined Control 
n  Control signals derived from instruction 

n  As in single-cycle implementation 



The Processor — 55 

Pipelined Control 
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Data Hazards in ALU Instructions 
n  Consider this sequence: 

 sub $2, $1,$3 
and $12,$2,$5 
or  $13,$6,$2 
add $14,$2,$2 
sw  $15,100($2) 

n  We can resolve hazards with forwarding 
n  How do we detect when to forward? 

§4.7 D
ata H

azards: Forw
arding vs. S

talling 
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Dependencies & Forwarding 
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Detecting the Need to Forward 

n  Pass register numbers along pipeline 
n  e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register 
n  ALU operand register numbers in EX stage 

are given by 
n  ID/EX.RegisterRs, ID/EX.RegisterRt 

n  Data hazards when 
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd from 
EX/MEM 
pipeline reg 

Fwd from 
MEM/WB 
pipeline reg 
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Detecting the Need to Forward 
n  But only if forwarding instruction will write 

to a register! 
n  EX/MEM.RegWrite, MEM/WB.RegWrite 

n  And only if Rd for that instruction is not 
$zero 
n  EX/MEM.RegisterRd ≠ 0, 

MEM/WB.RegisterRd ≠ 0 



The Processor — 60 

Forwarding Paths & Conditions 

          EX hazard 
* if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 10 
* if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 10 

         MEM hazard 
* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 
* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 
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Double Data Hazard 
n  Consider the sequence: 

 add $1,$1,$2 
add $1,$1,$3 
add $1,$1,$4 

n  Both hazards occur 
n  Want to use the most recent 

n  Revise MEM hazard condition 
n  Only fwd if EX hazard condition isn’t true 
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Revised Forwarding Condition 
n  MEM hazard 

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
                 and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
                 and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 
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Datapath with Forwarding 
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Load-Use Data Hazard 

Need to stall 
for one cycle 
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Load-Use Hazard Detection 
n  Check when using instruction is decoded 

in ID stage 
n  ALU operand register numbers in ID stage 

are given by 
n  IF/ID.RegisterRs, IF/ID.RegisterRt 

n  Load-use hazard when 
n  ID/EX.MemRead and 

  ((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
   (ID/EX.RegisterRt = IF/ID.RegisterRt)) 

n  If detected, stall and insert bubble 
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How to Stall the Pipeline 
n  Force control values in ID/EX register 

to 0 
n  EX, MEM and WB do nop (no-operation) 

n  Prevent update of PC and IF/ID register 
n  Using instruction is decoded again 
n  Following instruction is fetched again 
n  1-cycle stall allows MEM to read data for lw 

n  Can subsequently forward to EX stage 
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Stall/Bubble in the Pipeline 

Stall inserted 
here 
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Stall/Bubble in the Pipeline 

Or, more 
accurately… 
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Datapath with Hazard Detection 
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Stalls and Performance 

n  Stalls reduce performance 
n  But are required to get correct results 

n  Compiler can arrange code to avoid 
hazards and stalls 
n  Requires knowledge of the pipeline structure 

The BIG Picture 
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Branch Hazards 
n  If branch outcome determined in MEM 

§4.8 C
ontrol H

azards 

PC 

Flush these 
instructions 
(Set control 
values to 0) 



The Processor — 72 

Reducing Branch Delay 
n  Move hardware to determine outcome to ID 

stage 
n  Target address adder 
n  Register comparator 

n  Example: branch taken 
 36:  sub  $10, $4, $8 
40:  beq  $1,  $3, 7 
44:  and  $12, $2, $5 
48:  or   $13, $2, $6 
52:  add  $14, $4, $2 
56:  slt  $15, $6, $7 
     ... 
72:  lw   $4, 50($7) 
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Example: Branch Taken 
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Example: Branch Taken 
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Data Hazards for Branches 
n  If a comparison register is a destination of 

2nd or 3rd preceding ALU instruction 

… 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

n  Can resolve using forwarding 
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Data Hazards for Branches 
n  If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding 
load instruction 
n  Need 1 stall cycle 

beq stalled 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID 

ID EX MEM WB 

add $4, $5, $6 

lw  $1, addr 

beq $1, $4, target 
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Data Hazards for Branches 
n  If a comparison register is a destination of 

immediately preceding load instruction 
n  Need 2 stall cycles 

beq stalled 

IF ID EX MEM WB 

IF ID 

ID 

ID EX MEM WB 

beq stalled 

lw  $1, addr 

beq $1, $0, target 



Branch Hazard and Prediction 
•  Static prediction: always predict the same: Speculative running until 
condition is solved. If error, remove speculative results: 

•  Effective Prediction (E): branch occurs. 
•  No Effective prediction (NE): branch does NOT occur. 
•  Prediction NE if the branch is forward and E if it is back. 

•  Dynamic Prediction: change the prediction according the branch history. 
 Use a small memory for each branch address (BHT, Branch History 
Table) 
 
 
 

F 

PC Branch Instruction Address 

BHT 

E NE 
T 

T 

F 

F 

1 BIT PREDICTION 2 BITS PREDICTION 

Ef Ed T 
F 

T 

NEd NEf T T 

F F 
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Dynamic Branch Prediction 
n  In deeper and superscalar pipelines, branch 

penalty is more significant 
n  Use dynamic prediction 

n  Branch prediction buffer (aka branch history table) 
n  Indexed by recent branch instruction addresses 
n  Stores outcome (taken/not taken) 
n  To execute a branch 

n  Check table, expect the same outcome 
n  Start fetching from fall-through or target 
n  If wrong, flush pipeline and flip prediction 



The Processor — 80 

Calculating the Branch Target 
n  Even with predictor, still need to calculate 

the target address 
n  1-cycle penalty for a taken branch 

n  Branch target buffer 
n  Cache of target addresses 
n  Indexed by PC when instruction fetched 

n  If hit and instruction is branch predicted taken, can 
fetch target immediately 



Instruction 
Address 

Target 
Address 

History 
bits Branch Target Buffer (BTB)  

look-up  table Fully associative 

Program Counter 

Fetch Decod. 

Load target address 

Address 
Instruction 

Instruction Pipeline 

Target address found 

Branch Target Buffer (BTB) 
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Fallacies 
n  Pipelining is easy (!) 

n  The basic idea is easy 
n  The devil is in the details 

n  e.g., detecting data hazards 

n  Pipelining is independent of technology 
n  So why haven’t we always done pipelining? 
n  More transistors make more advanced techniques 

feasible 
n  Pipeline-related ISA design needs to take account of 

technology trends 
n  e.g., predicated instructions 

§4.13 Fallacies and P
itfalls 
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Pitfalls 
n  Poor ISA design can make pipelining 

harder 
n  e.g., complex instruction sets (VAX, IA-32) 

n  Significant overhead to make pipelining work 
n  IA-32 micro-op approach 

n  e.g., complex addressing modes 
n  Register update side effects, memory indirection 

n  e.g., delayed branches 
n  Advanced pipelines have long delay slots 
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Concluding Remarks 
n  ISA influences design of datapath and control 
n  Datapath and control influence design of ISA 
n  Pipelining improves instruction throughput 

using parallelism 
n  More instructions completed per second 
n  Latency for each instruction not reduced 

n  Hazards: structural, data, control 
 

§4.14 C
oncluding R

em
arks 



Información Adicional 
n  Información adicional para los problemas 

del capítulo 2 
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q Dependencias que se presentan para 2 instrucciones i y j, con i 
ejecutándose antes que j. 
q  RAW (Read After Write): la instrucción posterior j intenta leer una fuente 
antes de que la instrucción anterior i la haya modificado.   
q  WAR (Write After Read): la instrucción j intenta modificar un destino 
antes de que la instrucción i lo haya leído como fuente.  
q  WAW (Write After Write): la instrucción j intenta modificar un destino 
antes de que la instrucción i lo haya hecho (se modifica el orden normal de 
escritura).  

ü  Ejemplos:  RAW    WAR      WAW 
   

ADD  r1, r2, r3       ADD r1, r2, r3  DIV  r1, r2, r3  
SUB  r5, r1, r6       OR   r3,r4, r5  AND r1,r4, r5 
AND  r6, r5, r1  
ADD  r4, r1, r3 
SW     r10, 100(r1)   

Tipos de riesgos por dependencia de datos 

En procesadores segmentados 
con ejecución en orden SÓLO 
hay que gestionar los RAW 


